
1 Rebuttal1

1.1 Formatting2

We received some constructive feedback on how we can improve the formatting of our paper including3

the arrangement of figures, the removing of citations within the abstract, and repositioning of some4

subsections for more literary flow. To address these concerns, we rid of all citations in the abstract and5

made proofreading edits throughout the paper. Furthermore, we consolidate the related works section6

into short paragraphs as opposed to many subsections. We also move some of our extraneous figures7

to the appendix in order to make the contents of the report more concise. For better understanding8

of our methodology, we provide pseudo code instead of raw Python code that details our training9

algorithms used for each technique utilized. We specifically rearrange subsections describing the10

experimental results of the Tune-A-Video technique to be adjacent in order to promote continuity of11

content (Section 5).12

1.2 Paper Contents13

We first address the requests we received about our background on Denoising Diffusion Probabilistic14

Models (DDPMs). We believe that the technique description is an important element to keep in15

this paper as-is due to the fundamental importance of the idea with regards to the entire paper as16

a whole. Most of the techniques mentioned in Section 3 such as Tune-A-Video, Control-A-Video,17

ControlNet, Uni-ControlNet, and StableVideo all base their methodology on the basic principle of the18

DDPM. Since our work seeks to experiment with these techniques and extend them, we believe the19

background information on DDPMs to be paramount to this paper even if the concepts are already20

well-known.21

Some feedback we received for our paper pertains to mentioning experimentation with the Tune-A-22

Video technique with a Stable Diffusion 2.1 model as well as mentioning unreleased models such as23

Stable Diffusion 3 and SORA as possible areas of study and experimentation. While the criticism is24

against including such statements, we believe that because this paper has evolved into an overall study25

of generative text-to-video model architecture, it would be imperative to include such information26

within the report. Since we aim for this paper to provide an overview of all experimentation efforts27

made to evolve the techniques mentioned in Section 3, it would be reasonable for us to mention all28

the methods experimented with.29

A large portion of the criticism received is regarding the lack of novelty of the techniques proposed30

within this paper. The paper, as it currently stands, only serves as an overview of existing methods31

of generating coherent text-to-video models, with some achieving output controlled by additional32

conditions while others achieving consistency of foreground and background objects across frames.33

We also mention all attempted efforts of training a neural network model that is capable of achieving34

both qualities at the same time. Throughout the semester, we encountered issues with getting our35

base methods working, having a consistent research direction, and coming up with something truly36

novel. When we explored new research objectives, we realized that there were already similar37

works detailing the same approach. We then read the related literature to understand the respective38

methodology and attempt to propose some new research objective to see if would could implement39

an improvement. As we discovered more existing works, it became challenging to understand the40

new methodologies, and as a result we spent a significant amount of time further reviewing literature41

rather than running experiments. We then eventually reached a point where we decided it was better42

to thoroughly investigate existing methods rather than coming up with a completely new approach.43

Specifically, our challenges can be listed in chronological order:44

• We first decide to develop a novel architecture that generate videos with consistent scenery.45

• We realize this has already been done by the Tune-A-Video technique. We respond by46

developing a novel method of adding conditional control to the output of a text-to-video47

model to further stabilize background and foreground objects.48

• We realize this has already been done by the Control-A-Video and Neural Layered Atlas49

techniques. We respond by developing novel improvements that make training consistent50

text-to-image models more efficiently by borrowing ideas from the Uni-ControlNet method.51

• As the deadline came closer, we realized we no longer had the time to understand all related52

literature. We decided to conduct experiments with our baseline techniques instead.53
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• However, based on feedback we were able to produce some additional results using both54

some suggested methods as well as methods we did not have time for prior. These new55

additions can be found highlighted in the results section below.56

Due to these difficulties, our paper evolved to become more of a report of our process in investigating57

the various state of the art methods as well as details about all of the approaches we attempted based58

on this knowledge. Overall, while we acknowledge that this paper does not demonstrate amazing59

quantitative results, we believe that the insights gained from our investigation are valuable and do60

demonstrate several potential novel approaches to video generation.61

1.3 Experimentation and Approaches62

We received several comments questioning the rationale of some of our approaches and experiments.63

While we believe we have already explained our choices for choosing methods like Uni-ControlNet64

and NLA, we acknowledge that due to the organization of the paper as mentioned earlier it may have65

been unclear where these explanations are. So, we have made sure to more clearly state motivations66

and emphasize our experimentation choices.67

Additionally, many comments suggested that we test some of the approaches we listed in further68

works such as optical flow and frame interpolation. While we did test some of these methods prior69

to the initial submission (but omitted results do to lack therof), in response to this feedback we ran70

additional experiments testing different combinations of new methods. The two most promising71

results are highlighted in a new portion of the results section.72

Next, we received several comments inquiring about our rationale for choosing Neural Layered73

Atlases as an approach, as well as questioning why the experiment failed. First, as mentioned in74

the related works section as well as our approaches section, we picked NLA as a potential solution75

due to its proven ability to preserve high spatio-temporal consistency in video editing applications.76

A primary problem we identified in current video generation is the lack of consistency of output77

especially when there are occluded objects present. The NLA technique excels in this application78

specifically, because by separating the objects in the video into independent layer representations, the79

model is able to alter the motion of specific objects without changing that of others unrealistically.80

As for a potential further explanation for the failure of our experimentation with NLA, we still81

believe it is mostly due to computational efficiency. Given sufficient compute, we would implement82

NLA video generation in a similar way to the Uni-ControlNet implementation we used. Create a83

simplified version of a neural atlas based off of the initial frame, then generate subsequent frames84

while minimizing deviation from previous atlas layers.85

Finally, to address the lack of quantifiable or tangible results, we believe that unfortunately our chosen86

area of video generation is very challenging to achieve quantifiable good results in primarily due87

to constraints such as computing power. We did consider standard metrics such as FVD and CLIP88

scores. However, we realize that these results likely would not be significant, since throughout our89

experimentation we have not been able to produce videos longer than 5 seconds or over 30 frames90

per second. As such, low scores on metrics would not be very accurate to the actual quality of our91

results since it would be uncertain whether the cause was just due to our lack of resources anm time.92
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Abstract

With the rise of Generative AI, recent improvements in diffusion techniques have93

been developed to generate art contextually accurate to user input. However, video94

output from Stable Diffusion models still seem to have sudden differences between95

neighboring frames and can be easily differentiated from videos taken in real life96

at times. Subjects and background environments in generated videos are prone to97

suddenly shifting appearance, making the video more identifiable as a result of98

AI generation. In particular, we found that even state-of-the art video generation99

and editing models struggled when occlusion was present. We propose a project100

to find a solution to improve the smoothness and consistency of video generation101

network output by using various approaches such as ControlNet and neural layered102

atlases. Additionally, we intend to combine newer concepts like Uni-ControlNet103

with existing text to video models in order to enable even better control of video104

results.105

2 Introduction106

Using diffusion models like Stable Diffusion, users can create videos from input text, images, or107

videos. Each frame of the output video is generated independently using the diffusion model, which108

results in slight differences between frames. Current methods to improve the smoothness of diffusion109

generated videos rely on techniques focusing on pixel motion information [7] or Recurrent All-Pairs110

Field Transforms (RAFT) for optical flow [13].111

These methods show good results when applied to generate videos, but are inefficient because they112

often require per-pixel calculations and additional processing. Current generative video systems113

already struggle from computational limits; e.g. generating a 10 second video at just 20 fps would114

involve using diffusion text-to-image to create over 200 images. Even top open source text to video115

models like VideoCrafter [3] took over 10 minutes to generate a 2 second video (running on one116

RTX A4000 GPU). Earlier works like ControlNet [15] have been proven to allow much finer control117

over text-to-image generation, and don’t add much to the runtime complexity since they can be118

pre-trained for various controls (like edges or depth for example). We hope to use implementations119

of pre-trained ControlNets such as Uni-ControlNet to allow better control over the various objects of120

a scene without calculating pixel motion every frame.121

Additionally, several state-of-the-art generative video editing frameworks have employed techniques122

to effectively separate the objects and background of a scene. This also involves pre-trained models123

that break apart the frames of a video, and demonstrate strong ability to preserve spatio-temporal124

consistency across the video despite edits to the appearance of the frames.125
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Taking inspiration from these previous methods, we aim incorporate them in video generation126

architecture itself. In applying these methods in this novel way, we hope to further improve control127

and consistency of AI-generated videos while improving efficiency at the same time.128

3 Related Works129

Tune-A-Video is an approach that creates a T2V model by fine-tuning an existing T2I diffusion130

model [14]. This method continues to train pretrained T2I models with an additional spatial-temporal131

attention mechanism using structural guidance. As a result, videos generated from the final result132

can have temporal consistency without having to train a model from a large video dataset. Control-133

A-Video expands upon Tune-A-Video by adding control to the outputs generated by T2V models134

[4]. This technique aims to generate videos based on a sequence of control maps (depths, soft-135

edges, normals, segmentation masks, etc). Furthermore, this model uses two motion-adaptive noise136

initialization strategies to incorporate motion priors and a first-frame conditioned controller to include137

content priors. Resulting videos show an increased foreground and background consistency between138

frames.139

ControlNet is a neural network architecture that enables the addition of conditioning controls to140

existing text-to-image diffusion models [15]. They can be trained on various spatial conditions such141

as Canny edges, segmentation maps, depths, and more. The ControlNet structure is applied to each142

encoder level in the U-net of the diffusion model to control the output of the model. Uni-ControlNet143

expands upon the ControlNet by handling different conditions within one single model and by144

supporting composable control [16]. This method utilizes a multi-scale condition injection strategy145

instead of injecting singular conditions directly into input noise. This technique proves superior to146

using N different ControlNets on N separate conditions since the Uni-ControlNet only uses local and147

global adapters, reducing the number of times the model needs to be fine-tuned to a constant value of148

two.149

Neural Layered Atlases (NLA) is a method that unwraps an input video into a set of layered 2D150

atlases [10]. Each atlas is a representation of the appearance of an object or background throughout151

an entire video. This technique uses coordinate-based MLPs to map pixels into an atlas space,152

which are then optimized against reconstruction and regularization losses in order to preserve the153

integrity/realism of the video. By separating objects into separate interpretable layers, NLA allows154

users to make edits to the entire video by simply altering a single atlas. This method has been shown155

to improve temporal consistency as well as occlusion performance in video editing. Text2LIVE and156

StableVideo are both video editing frameworks that leverage pre-trained neural layered atlases of157

videos in order to produce consistent edits. While Text2LIVE uses only NLA to ensure consistency158

[1], StableVideo takes it one step further and utilizes an inter-frame propogation mechanism based on159

ControlNet in order to further preserve object consistency [2]. However, both of these frameworks160

require separately trained NLAs and an existing video.161

4 Methodology162

4.1 Preliminaries163

Denoising Diffusion Probabilistic Models (DDPMs) is a generative technique that is trained164

on reversing a fixed forward Markov Chain x1, ..., xT [6]. Assuming an image data distribution165

x0 ∼ q(x0), the Markov transition q(xt|xt−1) is defined as a Gaussian distribution:166

q(xt|xt−1) ∼ N (
√

1− βtxt−1, βtI), t = 1, ..., T (1)

where βt ∈ (0, 1) is the variance schedule. As a consequence:167

q(xt|x0) ∼ N (
√
(1− βt)...(1− β1)x0, (βt)...(β1)I), t = 1, ..., T (2)

q(xt−1|xt, x0) ∼ N (µ̂t(xt, x0), β̂tI), t = 1, ..., T (3)

where168
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µ̂t(xt, x0) =
1√

1− βt

(
xt −

βt√
1− ((1− β1)...(1− βt))

ϵ

)
(4)

and169

β̂t =
1− ((1− β1)..(1− βt−1))

1− ((1− β1)..(1− βt))
βt (5)

and170

ϵ ∼ N (0, I) (6)

due to the Markov Property and Bayes’ Rule. DDPMs accomplish this reversal at each step with a171

transition defined as:172

pθ(xt−1, xt) ∼ N (µθ(xt, t), δ
2
t I), t = 1, ..., T (7)

where µθ is the denoising autoencoder, with learnable parameters θ, trained so that the reverse process173

is as close to possible to the forward process with the objective:174

min
θ

Ex,ϵ∼N (0,I),t

[
1

2δ2t
||µ̂t(xt, x0)− µθ(xt, t)||2

]
(8)

as derived by maximizing the variational lower bound of the log-likelihood optimization which has a175

term representing the KL-divergence between Gaussian distributions.176

Latent Diffusion Models (LDMs) are newly introduced variants of DDPMs that use the same177

technique as described above within the latent space of an autoencoder [12]. The concept of LDMs is178

best described as two-fold. The first of which is an autoencoder optimized to minimize patch-wise179

loss on a large dataset of images with an encoder to compress input images into latent space and a180

decoder to reconstruct latent variables back to the approximate original input. The second part is a181

DDPM trained to denoise added to sampled values in the latent space.182

4.2 Preliminary Work183

In order to understand the state-of-the-art space for the area of video generation, we began by184

collecting the top text/image to video generation and video editing models to our knowledge (that185

offered public code bases). Initially, inspired by discussions about transformers and attention methods186

like (SWIN [9]), we aimed to improve consistency by augmenting the attention modules of the187

video models. In order to preserve a realistic transition between frames, we attempted to apply a188

shifted-window attention method between adjacent frames. However, a deeper dive into the code189

of these models revealed that some projects like Tune-A-Video and Control-A-Video had already190

implemented novel spatio-temporal attention modules that add time as a third dimension to create191

even more consistent video frames. Realizing this, we pivoted to finding novel applications or192

combinations of some of the most well-performing methods, aiming to achieve the benefits of all of193

these methods within one model.194

4.3 Approaches195

Throughout our investigation of novel methods to further improve video generation, we converged on196

two primary approaches. First, we experimented with applying the foundational ControlNet method197

(which adds controls to text-to-image generation) to video generation. This involved extensive testing198

of existing works that use this method in order to understand how the ControlNet architecture fits into199

the process of video generation. Second, we explored existing video editing models that generally aim200

to isolate various objects in a scene in order to preserve spatio-temporal consistency throughout the201

editing process. We tested various ways of incorporating these techniques into the video generation202
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process itself in order to create a self-contained video generation framework that can achieve high203

consistency and control without post processing or external plug-ins.204

Uni-ControlNet for video generation205

The first off-the-shelf model we experimented with was Tune-A-Video [14]. This work fine tuned206

existing text-to-image models in order to convert them into text-to-video. Notably, Tune-A-Video207

utilizes a 3D U-Net that allows for more consistent results through applying a spatio-temporal208

attention mechanism. We first aimed to modify the Tune-A-Video pipeline in order to integrate209

existing ControlNet implementations, and therefore benefit from the consistency of Tune-A-Video210

while improving the control provided by ControlNet.211

Through further literature review, we discovered Control-A-Video, which already incorporates212

ControlNet-like controls into a text-to-video generation model. They utilize a 3D ControlNet pipeline213

to apply the control maps across not only the individual frames but also across time. Thus, instead of214

trying to recreate Control-A-Video using Tune-A-Video we decided to instead try to improve upon215

Control-A-Video by leveraging the multi-control ability of Uni-ControlNet [16]. Uni-ControlNet216

enables composable multi-control by using local and global adapter representations to add many217

controls without impacting the efficiency of the process significantly. Using this method, we can218

apply multiple controls that improve consistency and realism at the same time. For example, we219

can use both Canny edge maps and Midas depth maps at the same time to ensure objects in the220

generated video not only follow a realistic movement pattern (using edges) but also don’t morph into221

the background (depth).222

We choose to focus our approach on incorporating Uni-ControlNet because of its potential to improve223

both consistency and quality simultaneously without increasing complexity significantly.224

Neural Layered Atlases (NLA)225

Through our investigation of the video editing system StableVideo [2], we learned about the concept226

of Neural Layered Atlases [10]. NLA can be pre-trained on the frames of a video in order to create227

atlas representations of the background and each foreground object respectively. NLA uses multi-228

layer perceptron networks to map pixels from pixel-space into atlas space. The atlas serves as a single229

representation of a "layer" or an object over all frames in the video. Particularly of interest to us, the230

training of an NLA representation uses a rigidity loss term to encourage pixel mappings to be locally231

rigid in 2D atlas space (through a Jacobian matrix of mapping M at each pixel p):232

JM = [M(px)−M(p)M(py)−M(p)] ∈ R2x2 (9)

where233

px = (x+∆, y, t), py = (x, y +∆, t) (10)

This rigidity in atlas space encourages better spatio-temporal consistency when frames are changed234

through the editing process, which allows changes to a single atlas layer to be automatically applied235

to the entire video. Inspired by this, we hope to incorporate atlas rigidity loss between frames during236

generation itself. By creating an atlas representation on the first frame, we could enforce a similar237

rigidity loss function to subsequent frames in order to discourage unrealistic perturbations.238

5 Experimental Results239

5.1 Tune-A-Video Testing240

First, we tested the base functionality of Tune-A-Video in order to better understand the framework.241

We utilized the model to generate videos of various characters skiing in different art styles as shown242

in Figure 1. Then, we created a ComfyUI workflow that generates control maps for each frame of243

these videos, which resulted in Figure 2.244
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(a) Results after 100 epochs.

(b) Results after 500 epochs.

Figure 1: After feeding Tune-A-Video with a video of a man skiing, we generate videos of various
characters skiing in different artstyles using different prompts. The prompts in order from left to
right are: "mickey mouse is skiing on the snow", "spider man is skiing on the beach, cartoon style",
"wonder woman, wearing a cowboy hat, is skiing", and "a man, wearing pink clothes, is skiing at
sunset"

Figure 2: We generate control maps such as soft-edges and depths from sample videos to better
control the Tune-A-Video model.

5.2 Additional results with Tune-A-Video (using SD 2.1)245

During our testing of Tune-A-Video, we decided to try using Stable Diffusion 2.1 (as opposed to 2.0246

which we used for our earlier results). However, when we ran the exact same prompt experiment of247

different characters skiing, we got extremely blurry results (see Figure 3).248

This was an interesting and unexpected result, because we could not understand why the new Stable249

Diffusion would cause this to fail. However, through further investigation we noticed that SDv2.1 has250

a new depth-guided control system that generates images based off the Midas depth map of the image251

input [11]. This component may make it harder for Tune-A-Video to fine-tune SDv2.1 to create a252

text-to-video model since it does not come with SDv2.1 in the form of a separate ControlNet. We also253

tried using the UNet3DConditionModel class from the latest version of the HuggingFace diffusers254

library, but ran into issues since the base diffusion model of SDv2.1 only fits to 2D U-Nets. It doesn’t255

have the extra layer to support the temporal dimension.256

5.3 Uni-ControlNet for Video Generation257

In order to leverage incorporate Uni-ControlNet into video generation, we took inspiration from the258

inference module of VideoCrafter and modified the Uni-ControlNet code to create the frames of a259

video. Our first approach utilized the edge and depth maps of an existing video (a car turning on a260
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(a) Results after 100 epochs.

(b) Results after 500 epochs.

Figure 3: After fine-tuning a SDv2.1 model with Tune-A-Video, we generate videos of characters
skiing in different styles with different prompts. The prompts from left to right are: "mickey mouse
is skiing on the snow", "spider man is skiing on the beach, cartoon style", "wonder woman, wearing a
cowboy hat, is skiing", "a man, wearing pink clothes, is skiing at sunset"

(a) "Control maps"

Figure 4: Edge and depth maps from car video.

road) in the form of a list of maps for each frame in the video. Then, during the generation of each261

subsequent frame, we use Uni-ControlNet to control the image generated using the two control maps262

of the corresponding original frame as shown in the following code: Appendix A. A sample of the263

edge and depth maps are shown in Figure 4264

Using these control maps, we successfully generated a video using the prompt "jeep driving in the265

snow", which resulted in the following video Figure 5(three frames shown):266

We were able to generate an output that adheres to not only the edges but also the depth of the original267

controls. This created a smooth motion of the car, although the background still had some significant268

Figure 5: Video created using both edge/depth maps of existing frames
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Figure 6: Video created using "true" generation

Figure 7: Video generated using edge map interpolation

fluctuations. While the ControlNet can control major features of the frames, we expect that this is269

because the network is not detailed enough to prevent small fluctuations between the edges. Therefore,270

the background still suffers from the same issue of inconsistency. We believe that in the future if we271

combine this framework with some methods like control interpolation or optical flow, we can create272

a smoother result while maintaining this improved control.273

Next, in order to allow for a truly new video to be created, we first use the controls (edges and depth)274

of the previous frame to generate each subsequent frame. This created a result that did demonstrate275

decent consistency, but because each subsequent frame was restricted to the controls of the previous,276

there was no movement of the car in the video as shown in Figure 6277

In order to try and facilitate more variation between frames while keeping consistency, many combi-278

nations of controls. The following two proved to be the most promising.279

First, we use the edge maps of two consecutive frames and calculate an interpolation between them.280

With this method we hope to allow the subject to have slight movement, without sacrificing the281

smoothness of the frames. This produced a result that showed noticeably improved motion, using the282

prompt "dog running in the snow" in 7.283

Second, we use a combination of content maps and optical flow. We remove any depth or edge284

controls and use the content of the previous frame as the content control for the next frame to allow285

more movement. To mitigate unrealistic perturbations between frames we apply optical flow from the286

OpenCV Python package to estimate realistic changes per pixel. Results show potential with very287

dynamic movement while maintaining some consistency. The figure below shows generation using288

the prompt "car driving on a road". 8289

Figure 8: Video generated using content control and optical flow
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5.4 NLA for Video Generation290

As mentioned earlier, we intended to train atlas layers based on initial frames then use rigidity loss to291

encourage consistency of subsequent frames. However, we were unable to produce any significant292

results due to computational issues. Atlas layer representations typically require long pre-training293

times on entire videos, and doing so during runtime in our testing was too much for a single GPU to294

handle. We attempted to use the DistributedDataParallel wrapper to split the model across two GPUs295

(see appendix for code), but faced too many difficulties in the implementation to continue.296

6 Further Work & Conclusions297

6.1 Conclusions298

Overall, through our investigation into the drawbacks and advantages of different video generation299

and editing approaches, we identified several key weaknesses and areas in need of improvement. First,300

since video generation relies on diffusion-based models to create each frame, it becomes difficult to301

control exactly how the entire video looks visually. In particular, we want to make sure that input302

controls like depth, edges, and text will be reflected consistently throughout the entire video. In303

order to improve performance in this regard, we showed the potential of using the Uni-ControlNet304

framework to allow for accurate and composable control of video generation. Next, we acknowledged305

the challenge of using pre-trained video editing methods like Neural Atlas Layers for improving306

consistency of video generation. While these methods work very well when editing an existing video,307

because we are creating new frames in real time, we don’t have access to the over-arching pixel308

knowledge across the entire video that we need to calculate more consistent and rigid representations.309

Finally, we identified some drawbacks of the state-of-the art Stable Diffusion version 2.1 in it’s lack310

of a 3-dimensional condition model.311

6.2 Further Work312

As we look to the future, we seek to further improve the quality of our Uni-ControlNet-based313

generation results by implementing 3D spatio-temporal attention architecture as well as other methods314

to allow for more flexibility between frames. We would also like to continue to experiment with the315

viability of using Neural Layered Atlases to generate video, perhaps with access to stronger computing316

power or better implemented multi-GPU models. Additionally, with the exciting announcement of317

new video generation models like SORA [8] and Stable Diffusion 3 [5], we hope to investigate and318

learn how these works might address some of the aforementioned shortcomings of current video319

generation methods. SORA utilizes latent spacetime patches along with a diffusion transformer block320

and conditioning using GPT-4 and CLIP in order to generates its video frames. We would be excited321

to investigate how these spacetime patches function to improve the spatio-temporal consistency of322

the resulting video. Stable Diffusion 3 also utilizes a diffusion transformer but foregoes the patching323

method, so it would be interesting to compare the results of these two models to determine whether324

the spacetime patching has a significant impact.325
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A Appendix / supplemental material364

Implementations365

Initial Uni-ControlNet video pseudo code366

edge_images = edges of every frame in the control video367

depth_images = depth map of every frame in the control video368

369

frames = []370

initialize seed371

372

for i in range(num_frames):373

samples = generate sample using DDIM sampler constrained by edge and depth map374

seed += i375

frame = samples[0]376

frames.append(frame)377

378

frames = torch.stack(frames, dim=0) // stack frames into video379

380

Uni-ControlNet video modified for "true" generation381
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382

prev_frame = initial_frame383

initialize seed384

frames = []385

386

for i in range(num_frames):387

get canny edges of previous frame388

get midas depth of previous frame389

390

samples = generate sample using DDIM sampler constrained by edge and depth map391

seed += i392

frame = samples[0]393

frames.append(frame)394

prev_frame = frame395

396

frames = torch.stack(frames, dim=0) // stack frames into video397

398

Interpolating between edge maps399

400

def interpolate_edge_maps(prev_map, curr_map, curr_idx, n_frames):401

t = curr_idx / (n_frames - 1) # Interpolation factor between 0 and 1402

interpolated_edge_map = cv2.addWeighted(prev_map, 1 -403

t, curr_map, t, 0)404

return interpolated_edge_map405

406

use interpolated edge map to guide next frame407

408

Using DistributedDataParallel409

def forward(self, x):410

def stem(x):411

for conv, bn in [(self.conv1, self.bn1), (self.conv2, self.bn2), (self.conv3, self.bn3)]:412

x = self.relu(bn(conv(x)))413

x = self.avgpool(x)414

return x415

416

x = x.type(self.conv1.weight.dtype)417

x = stem(x)418

419

# Split the model across two GPUs420

x1 = x[:, :, :x.shape[2] // 2, :].contiguous().to(’cuda:0’)421

x2 = x[:, :, x.shape[2] // 2:, :].contiguous().to(’cuda:1’)422

423

x1 = self.layer1(x1)424

x1 = self.layer2(x1)425

x2 = self.layer3(x2)426

x2 = self.layer4(x2)427

428

# Concatenate the results from the two GPUs429

x = torch.cat((x1, x2), dim=2)430

x = self.attnpool(x)431

432

return x433

Additional Figures434
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(a) Results after 100 epochs.

(b) Results after 200 epochs.

(c) Results after 300 epochs.

(d) Results after 400 epochs.

(e) Results after 500 epochs.

Figure 9: After feeding Tune-A-Video with a video of a jeep car turning, we generate videos of
various cars turning in different artstyles and backgrounds using different prompts. The prompts in
order from left to right are: "a jeep car is moving on the beach", "a jeep car is moving on the snow",
"a jeep car is moving on the road, cartoon style", and "a sports car is moving on the road"
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(a) Results after 100 epochs.

(b) Results after 200 epochs.

(c) Results after 300 epochs.

(d) Results after 400 epochs.

(e) Results after 500 epochs.

Figure 10: After fine-tuning a SDv2.1 model with Tune-A-Video, we generate videos of various cars
turning in different artstyles and backgrounds using different prompts. The prompts in order from
left to right are: "a jeep car is moving on the beach", "a jeep car is moving on the snow", "a jeep car
is moving on the road, cartoon style", and "a sports car is moving on the road"
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