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ABSTRACT

Large language models (LLMs) and agentic AI systems have demon-
strated powerful capabilities in automating data analysis tasks—from
planning to code generation. However, these systems often use a
wide range of AI techniques, from zero-shot prompting to multi-
agent orchestration, leading to confusion around the operational
definition of ’agentic’ in practice. In this paper, we survey rep-
resentative agentic data analysis systems and distill a simplified
conceptual framework for understanding their key components. We
introduce core techniques (e.g., in-context learning, tool-use, plan-
ning), map them to practical systems, and provide guidance for
choosing the right approaches based on task complexity and sys-
tem requirements. We also present a case study on event sequence
analysis using LLMs and agents, illustrating practical tradeoffs and
design challenges.

1 INTRODUCTION

In the domain of data science, there have been many works exploring
the application of LLMs in various capacities, across a diverse set
of use cases. Recent systems labeled as ’agentic’ vary widely in
complexity, from single LLM prompts to advanced multi-agent
frameworks using planning, tool-use, and dynamic orchestration.
With all of this complexity, it becomes very challenging and unclear
how to navigate or compare these systems as a whole, much less
their individual components and workflows. In this work, we aim
to survey some of the most popular approaches and papers in the
space, extract the underlying techniques and components, organize
them into a high-level guiding framework for agentic data analysis
systems, and provide preliminary guidance and considerations for
applying LLM-based approaches to data analysis in general.

2 BASIC CONCEPTS

In this section, we will provide a brief overview and definition of
some of the basic concepts that have led to and now make up the
components of more complex agentic systems. Starting from basic
LLMs, to strategies that improve LLM performance on specific tasks,
then discussing the definition of an “agent” in the modern context as
well as some of the innovations that enable agentic workflows.

In the context of these modern agentic systems, the key compo-
nent is the LLM. First developed based on the transformer archi-
tecture and attention mechanism in 2017 [12], the demonstrated
versatility of generative AI to perform a wide array of tasks and
leverage an impressive amount of general knowledge has led to an
explosion of generative AI applied to every domain possible. In
particular, OpenAI’s GPT models first introduced in 2018 with GPT-
1 [8] have created an almost cultural shift in the incorporation of
generative AI into society, especially with the widespread popularity
of the ChatGPT product.
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2.1 Basic LLM-Centric Strategies

An LLM on its own is in essence a next-token predictor, and while it
can demonstrate capabilities out of the box with enough training data,
many real-world applications need more task-specific performance.
To improve this specialized performance of LLMs, there have been
many innovations and techniques proposed.

The most simple approach is to explore different ways of modify-
ing the prompt, which is the input we provide the LLM. The most
basic approach is zero-shot prompting, where we simply tell the
model what we want in natural language. Next, there have been
several areas of research in improving model performance through
prompting. Prompt engineering refers to a set of best practices for
prompting through empirical observation, including specific choice
of words and phrasing, tone, and more [15]. In-context learning
at its foundation refers to providing one or more examples to the
LLM within the prompt, demonstrating the desired behavior [1].
This is also sometimes referred to as “few-shot” or “many-shot”
learning, referencing the number of examples provided as opposed
to “zero-shot” where none are provided.

To improve model knowledge of specific domain material or
large documents, the technique of retrieval augmented generation
(RAG) was introduced [6]. This approach converts a corpus of
documents into a vector database, then provides the model with
important context-based knowledge based on its similarity to the
task described in the prompt. In particular, this is especially effective
when the task requires specific domain knowledge that might not
have been represented in the model training data.

Finally, in general the most expensive method to improve LLM
performance is fine-tuning. The idea of fine-tuning a model based
on human preferences to enable transfer learning was first introduced
by OpenAI and Google Deepmind in 2017 [2]. In practice, however,
training all of the parameters of a large model is infeasible for
the vast majority of consumers. [5] introduces parameter-efficient
techniques for fine-tuning portions of the model, which are widely
used in practice for improving task-specific LLM performance. This
typically involves providing the model with a dataset of hundreds
or thousands of examples defining desired behavior, then training
the model on these examples, modifying some or all of the model
weights. While this method is more time-consuming and expensive
than prompt-based improvements, it can provide more robust and
consistent model behavior due to the actual modification of model
weights. Fine-tuned models can be saved and distributed, which has
led to the creation of many open-source task-specialized models that
can perform well with minimal computational resources.

2.2 Techniques Enabling Agentic Workflows

More recently, the concept of AI agents and agentic systems has been
applied to almost every task domain. However, the definition of what
an agent is in the context of LLM-centric AI and what constitutes
an agentic system still has much uncertainty. Many innovations and
developments have progressed the field of generative AI from simple
prompting based approaches, to providing LLMs with more control
to act on their own.

In this work, we define an agent as a modular LLM-based entity
that has the ability to autonomously make decisions about its next



actions based on goals, intermediate context, and access to available
tools or functions.

Transitioning from prompt improvement and model fine-tuning,
researchers discovered that approaches to encourage LLMs to rea-
son via prompting could greatly improve performance. One of the
earliest works found that using in-context examples to encourage
a model to think step-by-step in a chain of thought significantly
improves benchmark performance on reasoning tasks [13].

Next, an integral component to any agent or agentic system is
tool-use. This simply refers to the approach of providing LLMs
with access to non-generative tools to accomplish tasks or parts of
tasks, improving their ability to handle more specialized or complex
operations. Some of the first and common approaches were proposed
in TALM: Tool Augmented Language Models [7] and Toolformer
[10] where the LLM can make decisions about which tools to use or
how to use them, and is provided access to the tools through various
methods such as APIs or extensions.

Finally, a major innovation that improved agents was the intro-
duction of self-reflection and monitoring. ReAct [19] first explores
having models generate reasoning traces during task execution, im-
proving its own reasoning approach to tasks and decision-making
by thinking more about why it performs actions. In Reflexion [11],
LLM-based agents are asked to reflect on task feedback signals, us-
ing this information to improve decision-making in subsequent tasks.
These approaches were shown to provide significant improvements,
especially on tasks like complex reasoning and coding.

Modern agentic systems are typically multi-agent which intro-
duces multiple LLM-based agents with diverse interactions and
management strategies. This often requires a combination of ini-
tialization, planning, execution, monitoring, and coordination. In
general, multi-agent workflows seek to use human work organiza-
tion as a model, showing promise in performance on complex tasks
through task decomposition, collaboration, and refinement.

3 CONCEPTUAL FRAMEWORK

To organize and simplify the complicated space of agentic systems,
we propose a high-level framework inspired by project management
to map the layers and components of most approaches. Note that
this is a conceptual model designed to abstract common system
components, distinct from software implementation frameworks
like AutoGen or LangChain. In defining the components of the
agentic system framework, we draw inspiration from The Project
Management Lifecycle [14] which describes the phases of a project
as a cycle. This workflow consists of a cyclical sequence of: initial-
ization, planning, execution, and monitoring.

While this framework is originally applied to human workers,
intuitively, the agents in our LLM-based systems map well to it
due to the goal of many agentic systems which is to mimic the
collaborative workflow of actual humans. As such, we propose the
following conceptual framework for agentic system components
with components closely aligning with the stages of the project
management cycle as shown in Fig. 1. This conceptual framework
has five components, with the addition of coordination in contrast to
the original project management framework.

• Initialization — Define the task scope, assign agent roles, and
supply essential inputs such as datasets or research context.

• Planning — Decompose the overall task, delegate subtasks to
agents, and often optimize the execution plan.

• Execution — Carry out the work: LLM calls, code generation
and execution, tool usage, and any other operations needed to
complete each assigned task.

• Monitoring — Evaluate performance, apply iterative improve-
ments, and retry tasks when necessary.

Planning
task decomposition, assigning tasks to agents,

task structures (e.g. graphs)

Inputs
user input, project/task
description, research

objectives/goals, 
datasets, etc.

Initialization
defining scope, agent roles and abilities, etc.

Execution
executing task operations, code

generation/execution, tool-use calls

Monitoring
monitoring performance, self-reflection,

improvement, retries

Final Outputs

Coordination
coordinating

agents, memory
management,
context, etc.

Figure 1: A Conceptual Framework for Agentic System Components

• Coordination — Orchestrate multiple agents via shared mem-
ory, context, and API management so that intermediate and
final inputs/outputs flow correctly throughout the system.

It is important to note that while there is heavy inspiration from
the project management lifecycle to organize these components,
unlike in the original lifecycle framework, agentic systems are of-
ten non-linear and interleaved (as opposed to the more defined
sequential nature of the project lifecycle work). In particular, the
components of planning, execution, and monitoring can be inter-
leaved or concurrent.

For instance, the execution of a task could trigger dynamic moni-
toring, causing re-planning, which re-defines the tasks for agents and
re-starts the flow of execution. Furthermore, throughout the entire
process of planning, execution, and monitoring, the coordination
component must continuously manage various aspects of the system
to make sure agents can function correctly. Thus, this conceptual
framework primarily aims to organize components conceptually,
and does not imply a deterministic sequential execution order or
strict workflow.

4 SURVEY

In this section, we analyze four representative systems, each of
which applies agentic workflows to data analysis in distinct ways.
For each system, we will first summarize the basic design and goal
of the system. Then, we will map its components to the conceptual
framework proposed in the previous section, describing in detail
for each component: techniques used to implement the component,
why these techniques were chosen, and trade-offs or limitations to
consider for the technique(s) chosen.

4.1 Data Interpreter - Data Science
4.1.1 Summary
Data Interpreter [4] is an agentic system that enables LLMs to
perform end-to-end data science workflows, including data prepro-
cessing, feature engineering, model training, and evaluation. The
system is built around two key modules:



• Hierarchical Graph Modeling — LLMs dynamically decom-
pose a high-level data science goal into a directed acyclic task
graph, where nodes represent subtasks and edges represent
dependencies.

• Programmable Node Generation — Each subtask is further
broken down into executable actions, allowing for iterative
code generation, tool selection, execution, and verification.

Data Interpreter emphasizes dynamic adaptability: the system
reflects on execution results, updates and restructures its task graph
based on runtime feedback, and continuously optimizes its approach.
Experimental results show improvements over previous baselines
such as InfiAgent-DABench and MATH.

4.1.2 Conceptual Framework Mapping
Initialization. During initialization, Data Interpreter simply asks
the user to enter a project requirement in the form of a task-oriented
input (e.g. “analyze dataset and build predictive model”) along with
a dataset if relevant.

This approach was chosen to allow for maximum flexibility by
not enforcing fixed agent roles or pre-defined workflows. Instead,
we rely on the system and graph-based approach to adapt to the task,
which allows the Data Interpreter system to support a wide range of
data analysis tasks.

However, while the lack of role and workflow definition allows for
flexibility, it increases the difficulty of debugging or modularizing
behaviors to allow for interpretability and modifications. Further-
more, since the system relies almost entirely on the LLM’s capabil-
ity to infer appropriate tasks and plan execution strategies from an
open-ended prompt, there is an increased risk of hallucinations and
inefficient or incorrect approaches to the tasks.

Planning. To facilitate the core planning component of Data
Interpreter, the system employs a graph-based approach. Using in-
context learning (ICL) with many demonstration examples, LLMs
are prompted to decompose the input project description into a
hierarchical task graph in the form of a directed acyclic graph (DAG).
Each node in the graph represents a task along with the needed
attributes to execute it. Task nodes are further broken down into
multiple actions, which results in an action graph with action nodes.
This directed graph then becomes the plan of execution for the
system.

ICL is chosen as the technique for this component in order to
keep the system more adaptable, and also to improve efficiency over
more expensive and resource-intensive methods like fine-tuning and
reinforcement learning.

While ICL is a good method for improving task-specific per-
formance of LLMs, its effectiveness can also heavily depend on
prompt quality or quantity, on top of the LLM’s own reasoning
abilities. Through their experimentation, the authors demonstrated
good performance with their ICL-based approach, however it could
be possible to further improve performance by investing more time
into fine-tuning a model. The risk of relying on LLMs for decom-
position could be redundant tasks, overlooked dependencies, or
over-fragmentation causing the agents to lose the higher-level scope
of the research goals.

Execution. For the execution component, Data Interpreter im-
plements graph executors that traverse the task and action graphs to
“execute” the graphs. In particular, action nodes represent executable
(by the graph executor) code snippets that can contain data transfor-
mations, function calls, or other operations needed to complete the
task. When executing a task node, Data Interpreter retrieves from a
set of tools the most suitable tools for the task. An LLM is tasked
with ranking the most suitable tools in reference to the metadata
of the task node. After the most appropriate tools are chosen, the
system then chooses a tool for the task from the top-k of this list.

This implementation of tool-use allows for good flexibility, with
the system dynamically choosing the best tool for the task rather
than specific agents having access to specific tools. This improves
performance by allowing the LLMs to leverage specialized tools for
more difficult tasks rather than depending on potentially unreliable
LLM base knowledge.

While the ranking of tools provides adaptability, it is also po-
tentially a significant tradeoff in reliability. The ranking of tools
and therefore proper tool selection relies heavily on the quality of
metadata descriptions, which are also generated via LLMs in other
components. This can lead to volatility and propagation of errors,
because bad descriptions can lead to suboptimal or incorrect tool
usage, and therefore compromise the quality of responses in that
task node. If one task node is erroneous, subsequent dependencies
in the graph will also be negatively affected.

Monitoring. Data Interpreter leverages the graph-based work-
flow to automatically improve execution strategy through iterative
graph refinement. During execution, nodes are monitored by LLMs
tasked with reflection, updating node statuses to identify failures and
provide feedback. Failed or suboptimal tasks trigger mechanisms
that can reconstruct branches of the graph based on dependencies,
aiming to improve strategy based on the runtime feedback.

This type of self-reflection allows an agentic system to be more
robust in failure handling, thinking about why failures occurred
and attempting to improve its own performance without manual
intervention. Furthermore, the graph-based approach allows the
system to only refine the necessary parts of the graph without redoing
every action in the plan, which improves efficiency.

While this self-reflection can improve performance iteratively,
the reflection and retry mechanism still adds overall computational
overhead and latency. Despite the beneficial property of partial
graph restructuring, there is still the potential of a failure that causes
large portions or even the entirety of a complex graph to be restruc-
tured, which would be very expensive both in computation and time.
Furthermore, with automatic reflection and refinement, there is no
guarantee that the improvements will actually converge to better
performance.

Coordination. The management of agents is determined by the
graphs created in the planning component. The nodes in these graphs
contain important information on task status, execution feedback,
and dependencies. To coordinate this complex system, information
and context is passed along the directed edges of the graph, to make
sure each agent receives the necessary information and resources to
execute the task at each node.

Graph-based coordination was chosen to enable flexible task or-
dering and recovery by leveraging the dependencies and structure of
the DAG. By traversing the directed edges, the system can maintain
and coordinate a complex flow of information and task execution.

The main challenge with the graph-based approach is the main-
tenance of graph consistency, especially when the monitoring com-
ponent could cause dynamic changes to its structure. Furthermore,
especially for complex or large project descriptions, graphs can
become very difficult to debug in the event of an error in the system.

4.2 Multi-Agent Qualitative Data Analysis
4.2.1 Summary
This work proposes an LLM-based multi-agent system designed to
automate various types of qualitative data analysis tasks, including
thematic analysis, content analysis, narrative analysis, discourse
analysis, and grounded theory [9]. This implementation uses a more
simple approach in contrast to Data Interpreter, deterministically
specifying sequential workflows pre-defined for each use-case.

Each agent in the system is a specialized instance of an LLM, de-
signed to perform a distinct task. The system processes diverse data
inputs such as discussion links, uploaded documents, text prompts,



and interview transcripts, and outputs results in multiple formats like
CSVs or documents. For each qualitative analysis method, different
numbers and types of agents are deployed in a fixed workflow to
collaboratively process the input data.

The results demonstrate that the system significantly accelerates
the data analysis process while improving scalability and consistency,
with practitioner evaluations reporting 87% satisfaction with the
system’s performance.

4.2.2 Conceptual Framework Mapping
Initialization. The initialization component of this system is com-
pletely manual and is controlled by the user of the system. Users
provide input data or documents, and also text prompts specifying
their desired goals. The user is also asked to manually select the
qualitative analysis type of their task, which tells the system which
pre-defined agent workflow to use.

This approach was chosen both for simplicity and for robust
performance. By allowing users to specify the analysis type of their
research goals, the system will always follow the corresponding
agentic workflow. Furthermore, for the developers of the system, it
becomes much easier to debug and make modifications to the system
due to the deterministic nature of each workflow.

As a trade off, however, this approach greatly limits the flexibility
and adaptability of the system. For tasks that are more complex, the
ideal approach could actually be a combination of analysis types.
Additionally, the manual specification of analysis type depends on
the user correctly configuring and identifying their task type, which
could be unreliable.

Planning. As mentioned before, this agentic qualitative analysis
system relies on pre-defined agent workflows. In particular, there
are five types of qualitative analysis included in this work: thematic
analysis, content analysis, narrative analysis, discourse analysis, and
grounded theory. For each type of analysis, there is a corresponding
static workflow chosen by the researchers. For example, the narrative
analysis workflow consists of four agents in sequential order: a
summary agent to summarize the story, a coding agent to generate
initial codes for the task, then two agents that generate subcategories
and categories.

Again, this technique of pre-defined workflows is chosen to guar-
antee consistency. With these clearly mapped workflows to analysis
tasks, researchers can be confident that the task will be completed
through a known series of analysis steps tailored towards the speci-
fied type.

While more consistent, this approach also introduces rigidity,
preventing the system from dynamically adjusting its workflows or
adapting to tasks that aren’t clearly restricted to a single analysis
type. This means that this system is only suited for tasks in which
the analysis goal is already very clear, which isn’t always the case
for some data analysis contexts where the task is more exploratory.

Execution. Each agent in these workflows is an instance of an
LLM, and through a simple system prompt each LLM is assigned
its role. The specific prompts are not shared in the paper, but a
standard system prompt would be something like “You are tasked
with generating initial codes from a summarized text.” for the coder
agent. Then, the execution of tasks relies simply on the inherent
capabilities of each LLM, without any additional training or tool-use.

This approach of using system-prompting to assign LLMs roles
was chosen because it is the most straightforward and intuitive.
While the approach is basic, many works have shown that simply
telling LLMs their roles can have surprisingly good results, with
minimal complexity in programming or training.

However, although system prompts can elicit promising behaviors
from LLM agents, this approach is still less effective for more
complex tasks. It is entirely reliant on LLM abilities, which can be
very inconsistent and unreliable especially when specific domain

knowledge is required. Without tool-use or additional task-specific
improvement techniques like RAG or in-context learning, LLMs can
be very susceptible to hallucinations and misunderstandings of tasks,
leading to significantly degraded result quality.

Monitoring. This work does not implement any monitoring
or reflection techniques. Users simply manually review the final
outputs after the workflow is complete.

Foregoing a monitoring component again simplifies the system,
and also reduces computational cost as well as latency incurred by
the additional mechanisms to monitor and potentially retry portions
of the workflow.

While this approach definitely saves time and costs, it sacri-
fices the fault tolerance of the system. Without automatic failure-
detection, mistakes made by the system will have to be manually
inspected by the user, and in the event of an error the whole work-
flow would have to be manually rerun which would incur additional
costs anyways. Furthermore, this approach misses out on the self-
improving nature of other systems, which can lead to higher quality
results with deeper insights or understanding.

Coordination. In terms of coordination, this system does not
need much additional implementation. All workflows are simple
sequential handoffs, which just require the management of the pre-
vious agent’s output becoming the input to the next agent in the
sequence. In this way, agents can coordinate simply through the
context of these prompts that are propagated through the sequential
flow. While not discussed in-depth in this paper, it is implied that the
multiple agents do share access to the input documents or datasets,
but there is no mention of a shared data structure or memory enabling
them to collaborate on or modify any shared context.

This simplicity keeps the coordination of the system very straight-
forward, and minimizes the complexity of handling extensive com-
munication between agents.

Again, the rationale for choosing this approach is also one of
the main downsides of the system. By reducing communication
complexity, the benefits of multi-agent collaboration which have
been shown in other works is sacrificed. There is no negotiation or
feedback loops allowing agents to work together and be creative in
their problem-solving. Furthermore, the strictly sequential nature
causes errors made at any point in the pipeline to be propagated
downstream without opportunity for correction.

4.3 DB-GPT - Data Interaction
4.3.1 Summary
DB-GPT [17] [18] is an open-source, production-ready system that
enables natural language-driven database interaction and genera-
tive data analysis. It introduces a multi-agent framework, retrieval-
augmented generation (RAG) pipelines, fine-tuning for Text-to-SQL,
and strong privacy protection through local deployment capabilities.
DB-GPT supports building complex workflows through its custom-
designed Agentic Workflow Expression Language (AWEL), which
leverages DAG-based orchestration inspired by Apache Airflow.

In addition to traditional tasks like Text-to-SQL and QA over
databases, DB-GPT is capable of advanced applications such as
autonomous generative data analytics. It supports both local private
LLM deployment and cloud-based usage.

4.3.2 Conceptual Framework Mapping
Initialization. The DB-GPT system notably uses retrieval-
augmented generation (RAG) to create a knowledge base of relevant
information for the data analysis task. This RAG pipeline approach
first encodes documents into a vector database format, retrieves rele-
vant knowledge using cosine similarity, then finally injects the top K
retrieval results into the context of the LLM, improving task-specific
performance through in-context learning. For more complex oper-
ations such as Text-to-SQL, they choose to fine-tune open source



models on task-specific training sets (like Spider which includes
inputs of dataset descriptions and natural questions, paired with
outputs of the expected SQL). Lastly, to initialize the system, there
are several predefined agent roles such as Data Analyst, Software
Engineer, and Database Architect. Each of these agent roles is de-
fined with a specific system prompt describing their desired behavior,
along with access to different tools and plugins depending on their
task. Additionally, if desired, users can define custom agent roles as
well.

By employing a combination of agentic strategies to different
parts of the system, this work does well in choosing techniques
that improve each unique aspect of the system as much as possible.
The RAG pipeline approach enhances LLM knowledge beyond its
original training data, improving performance and relevance to the
specific context of the data analysis task being approached. By using
the combination of knowledge retrieval and in-context learning, the
system can improve the task-specific performance of the LLMs with-
out the cost of a full fine-tuning. In contrast, they identified through
experimentation and previous works that in-context learning was
insufficient especially for more complex tasks like Text-to-SQL. In
this case, fine-tuning on a large dataset of examples ensures much
higher robustness in behavior and performance. Finally, the flexibil-
ity to use predefined agent roles or define custom ones achieves the
best of both worlds in terms of ease of task assignment and tailored
performance.

In terms of trade-offs, each technique has its individual drawbacks.
RAG-based approaches naturally rely on the quality of the retrieval
approach, and if irrelevant context is retrieved the downstream task
accuracy could be significantly impacted. Fine-tuning is a resource-
intensive approach, and while providing better adherence to the
training data use, could make the model less adaptable to situations
not covered by the fine-tuning dataset examples.

Planning. DB-GPT supports both automatic and manual task
decomposition. For natural language queries, a specialized planning
agent (role defined through system prompt) is used to generate a
plan by decomposing the task into subtasks and assigning them to
specialized agents. Alternatively, developers can manually define
multi-agent workflows using AWEL (Agentic Workflow Expression
Language), a DAG-based declarative language inspired by Apache
Airflow. This dual-mode planning provides flexibility: end users
benefit from autonomous planning via LLMs, while developers can
fine-tune or debug workflows with complete control.

The automatic task decomposition approach is much simpler,
allowing more casual users with simpler tasks to describe their goal
in natural language and have an LLM agent figure out a plan on
its own. This also allows more dynamic adaptability in the system,
where the planning agent can adapt its strategies to a diverse array
of possible tasks. For more complicated tasks or for users desiring
granular control over the workflow, AWEL generates a DAG where
nodes are operators represented by an LLM agent. The developer can
then design intricate workflows by specifying dependencies through
edges, carefully controlling the flow of information in addition to
custom agent configurations.

Each of these approaches has their own unique tradeoffs. The
agent-based automatic planning makes task decomposition more
simple for the user, but leaves the system vulnerable to LLM hal-
lucinations or inefficient planning. If the planning agent makes an
error in its strategy, this failure would propagate downstream to later
agents without much ability for the user to mitigate. In contrast, the
AWEL graph-based approach heavily depends on the proficiency of
the developer that constructs the workflow. The low-level control is
good for when the developer is very certain of how the task should
best be approached, but also makes the performance much more
sensitive to mistakes in factors like subtask granularity, multi-agent
strategy, agent roles, and more. Furthermore, this systematic ap-
proach can make the system more rigid. While beneficial for very

specialized and complex tasks, a carefully tailored system with in-
tricate dependencies might not transfer well to many other types of
tasks.

Execution. Agents in the DB-GPT system are associated with
nodes, which contain details describing the task that is to be com-
pleted. These agents have access to various tools and capabilities
as defined in the initialization stage, such as SQL generation, code
execution, and more. As the workflow follows the dependencies in
the graph of tasks, agents can leverage their tools to execute complex
actions beyond the LLM’s basic capabilities. For specific tasks like
Text-to-SQL translation, the system will use specialized fine-tuned
LLMs (e.g. Qwen) to complete the task.

Tool augmentation approaches like this greatly improve and ex-
tend LLM-based agent’s reach to difficult tasks like real-world data
interaction, visualization creation, and more. This effectively ex-
tends the abilities of the system past the inherent limitations of
LLMs, which is especially important for a domain like data analysis
in which specific knowledge and manipulation of data is crucial.
Fine-tuned models, like mentioned before, typically outperform in-
context-learning approaches especially on specialized tasks like SQL
generation.

While tool-use improves model capabilities, the access to plugins
and external APIs also introduce risk around security or tool misuse.
For example, despite being given access to a robust tool special-
ized for generating visualizations, this approach still relies on the
LLM to use it correctly (e.g. providing accurate values for a chart,
choosing the appropriate type of chart). Furthermore, fine-tuned
models could require careful re-training to stay aligned to evolv-
ing database formats, new research contexts, or simply changes in
desired behavior.

Monitoring. DB-GPT does not support automatic reflection or
feedback-based improvement mechanisms. However, it does support
adaptive learning via user feedback post-execution. In addition to
user interactions, this feedback can be used to adjust agent behavior,
retrain or fine-tune models, and overall improve the system for future
runs.

This approach was chosen to simplify runtime operations and
separate the feedback-mechanism from the execution workflow. Ad-
ditionally, depending on user feedback ensures that future modifi-
cations to the system are rooted in feedback that is closely aligned
with what the user wants specifically.

However, implementing monitoring post-execution does sacrifice
the benefits of real-time reflection. Most importantly, the lack of
real-time error detection and improvements makes the system much
more susceptible to task failures and hallucinations. Furthermore, the
manual nature of this adaptive learning approach lacks consistency,
meaning that the quality of user feedback and how it is used to
modify the system can lead to drastically different performance for
different users.

Coordination. To manage the coordination of multiple agents,
the DB-GPT system archives the entire communication history of
agents within a local storage system. Coordination of information
and context flow between agents is implemented using AWEL, gen-
erating a directed acyclic graph (DAG) which specifies intricate
relationships and dependencies through edges. This approach was
inspired by big data processing concepts like Apache Airflow.

The DAG-based orchestration enables clearly-defined workflows,
allowing users to directly control and create complex multi-agent
collaboration. Furthermore, storing full conversation histories allows
for improved debugging and interpretability, allowing users and
researchers to manually inspect all agent communication.

While these approaches greatly improve the structure and control-
lability of the system, they also introduce complexity and memory
overhead. For example, for large workflows, storing entire commu-
nications in local storage can take up very large amounts of memory



space. Additionally, DAG models can also suffer from issues like
looping, where if not carefully designed, a workflow can get stuck in
an infinite cycle and cause many complications to the performance
of the system and difficulty of debugging.

4.4 AutoGen - General Agentic Framework
While the previous examples focused on specific agentic systems
designed for particular data analysis tasks, there also exist more
general-purpose frameworks aimed at building flexible, reusable
agentic workflows across domains. These frameworks, such as Auto-
Gen and LangChain, provide abstractions for initialization, planning,
coordination, execution, and monitoring — aligning closely with the
agentic system structure described earlier.

In this section, we highlight AutoGen [16] as a representative
example of a multi-agent framework that can be adapted for various
data analysis workflows. An important note, in contrast to our
conceptual framework, AutoGen provides a software framework for
implementing agent-based workflows.

4.4.1 Summary
AutoGen is a general-purpose framework designed to enable the
construction of multi-agent LLM systems through structured con-
versations between agents. Rather than building rigid pipelines,
AutoGen provides flexible agent classes and dynamic orchestration
mechanisms, allowing developers to define complex collaborative
workflows where multiple LLMs (or tools) interact to solve tasks.

Agents in AutoGen can take on different roles, maintain memory,
exchange information with each other, call external tools, and revise
plans based on feedback — making it highly adaptable to data
analysis tasks that require multi-step reasoning, code generation,
iterative refinement, or complex coordination.

4.4.2 Conceptual Framework Mapping
Initialization. In the initialization component, AutoGen uses ex-
plicit role definition, allowing developers and developers to define
their own custom agent types (e.g. “PlannerAgent”, “CoderAgent”,
“CriticAgent”) and specify their capabilities (e.g. tool access, sys-
tem prompt, communication permissions). The framework also has
various features to facilitate management of inputs of many formats,
support for LLM APIs, and extensive documentation guiding devel-
opers on how to initialize their desired workflow using many popular
workflow templates or lower-level customization for those that need
more control.

This approach was chosen to maximize modularity and control for
developers, so that roles can be easily defined or modified without
rewriting the whole system. In this way, researchers and developers
can quickly specify the workflow and roles they want, then easily
make adjustments to experiment quickly with different approaches.

In terms of trade offs, the main drawback is that this approach
requires more extensive and careful design upfront by the developer.
Rather than a predefined system that the developer can immediately
apply to their problem, more effort is needed to define agent roles and
specify the system workflow through code. While the ease of agent
definition is advantageous for experimentation and research, it also
means that poorly designed roles could lead to weaker performance.

Planning. As described in the initialization section, all agents
in AutoGen can be custom-defined by the developer. Therefore, any
agent can be involved in the planning component. However, typical
practice is to define a “PlannerAgent”, which is asked to decompose
complex tasks into subtasks. This can be done dynamically through
conversation with the developer, other agents, or simply sequentially.

This approach is chosen to maximize flexibility, allowing the
developer to deploy agents that can plan and modify plans at any
point in their agentic workflow. This can enable more creativity and
collaboration in a dynamic way between agents, rather than rigid
pipelines.

While this approach offers increased flexibility, the quality of task
planning can also heavily depend on many factors such as initial
prompting, model capabilities, and more. This can cause undesirable
unpredictability, with agents potentially proposing redundant or even
incorrect subtasks that don’t effectively achieve the overall goal.
However, due to the flexibility of the AutoGen framework, this also
means that developers can use any combination of techniques to
improve model performance, like in-context learning, fine-tuning,
RAG, or more capable models. To the more experienced developer,
this can be a benefit as it removes the restrictions of the predefined
workflows in other agentic systems.

Execution. Most AutoGen workflows leverage techniques like
tool-use, LLM-based code generation, as well as traditional LLM
prompting and reasoning ability. Agents can be given the ability
to invoke external APIs for tools, generate and run Python code, or
trigger other types of executions through executors (e.g. file-system
interaction, database queries, real-world interactions). Agents can
also reason about what tools or actions to use to complete their
assigned task.

By equipping agents with tool-use and external access, Auto-
Gen extends LLM capabilities to allow for greatly improved task-
execution power and performance. Beyond the inherent knowledge
and ability of the LLM, when tasked with a difficult operation the
agent can choose to invoke a more suitable tool for the job.

With tool-augmented agents, there are several important risks to
consider, including tool failures, compatibility issues, and security
risks. Depending on the types of tools we give the agents access
to, there can be significant complexity if the agents use the tools
incorrectly, or potentially execute operations in an unexpected way
that is harmful to other aspects of the system and workflow. For
example, given access to a database and code execution tools, an
agent could modify or delete parts of the database that are important
for other parts of the task, causing the result to be incorrect and
causing actual harmful change to our data.

Monitoring. To implement monitoring, the most common prac-
tice is to define specialized agents to assess task outcomes at various
points in the workflow, identify issues, and suggest improvements.
Once this monitoring system identifies a failed task, the agent can
trigger re-execution with updated strategies after reflecting on the
feedback of the failure.

These monitoring agents are an intuitive way to allow for dynamic
error detection without human supervision, which can often save
time and effort. Furthermore, if implemented well, the reflection
can allow the system to self-improve and become more reliable over
time, without having to retrain models or redefine agents.

While reflection allows the system to improve unsupervised, it
can also add latency and cost to workflows. Additionally, reflection
can lead to overcorrections if constraints are not carefully applied,
which could cause the workflow to actually diverge in terms of
performance and accuracy. In other words, if we completely leave
reflection and re-execution up to agents that are not well-defined,
they could potentially infinitely retry and modify their strategies,
eventually costing excessive time and resources or completely losing
the scope of the original task.

Coordination. Within the AutoGen framework, there are sev-
eral classes implemented to handle any important conversational
pieces of the system. For example, there are classes to handle mes-
sages of various types like AgentEvent, ChatMessage, ToolCallExe-
cutionEvent, TextMessage, and many more. Together these features
help manage agent communication and collaboration. There are also
features to manage shared memory, chat histories, and persistent
context.

The implementation of these classes helps give the developer a
very granular understanding and control of the multi-agent coor-
dination. With different types of messages and objects handling



every type of agentic communication, the framework is capable of
managing very complex workflows while effectively maintaining
context and propagation of information.

Like before, the tradeoff of this granularity of implementation is
also the risk of sub-optimal execution. If coordination isn’t carefully
controlled, conversations and multi-agent collaboration could result
in inefficiencies like loops, loss of context, and overall complex
errors to debug especially for more complicated workflows.

5 SURVEY TAKEAWAYS AND GUIDANCE

As highlighted in the survey of representative systems, there are
many tradeoffs and considerations to take into account when decid-
ing what AI approach to use, or what technique to implement the
components of a complex system. In this section we will summa-
rize some guidance for approaching the application of LLM and
agentic workflow techniques to a variety of use cases.

In Table 1, each of the basic techniques mentioned before are
described along with their ideal use case(s), along with some addi-
tional considerations. The surveyed systems are all combinations of
many if not all of these techniques, so this summary of takeaways
aims to outline why each technique was used, connect them to ex-
ample use cases in the surveyed systems, and provide some tradeoff
considerations that were mentioned throughout this paper. Overall,
the hope is that by providing a clear high-level understanding of this
diverse set of techniques, readers can have a better sense of how to
apply LLMs to their own usage scenarios, or even develop their own
agentic system.

Across the surveyed systems, a few patterns emerge: in-context
learning is frequently used for planning (e.g., Data Interpreter), while
execution often combines tool-use and code generation (e.g., DB-
GPT, AutoGen). Only some systems implement robust monitoring
(e.g., Data Interpreter, AutoGen), while others defer to user review
(e.g., Qualitative Analysis). This highlights a trend of escalating
complexity aligned with task specificity and reliability needs.

6 CASE STUDY

We now describe a real-world case study illustrating how our frame-
work and survey-informed guidance can support system develop-
ment for event sequence analysis. In a current project we are working
on, we aim to apply LLM-based approaches to event sequence anal-
ysis. Through the course of developing a system for this project, we
have experimented with various approaches and techniques. In this
section, we will provide a high-level walkthrough of our experimen-
tal process in choosing techniques, as well as considerations of trade
offs and rationale for the choices and changes made.

To briefly provide context for the goal of this project, we aim to
leverage LLMs to create a human-AI collaborative system specif-
ically for event sequence analysis. Based on A Multi-Level Task
Framework for Event Sequence Analysis [20] consisting of a
hierarchical multi-level organization of event sequence analysis ap-
proaches based on a survey of many event sequence analysis systems,
this work explores using LLM-based techniques to assist a data ana-
lyst across the entire process of developing an analysis strategy.

Initially we aimed to generate an entire analysis plan based on the
research context, then eventually execute the steps of that strategy
to generate results and/or visualizations. However, after further
experimentation we consider a more targeted approach, investigating
which parts of the analysis process we can aim to improve. Currently,
we are investigating a more RAG-based approach, leveraging our
large corpus of event sequence analysis systems and case studies to
provide users with suggestions or references to assist their analysis
goals. As a future goal, we plan to explore and revisit the idea of
workflow generation, where LLM-based agents collaborate with the
human analyst in developing a sequence of analysis steps to achieve
the ultimate research goal.

6.1 Experimentation
6.1.1 Zero-shot Prompting
To serve as a baseline for our testing, we simply provided an input
of just a sample research question from one of the case studies in
the framework paper, and asked the LLM to extract an analysis plan.
Without providing additional examples or knowledge, we ask the
model to extract an analysis plan.

Results. While this was a very quick and easy way to begin
our testing, as expected, the results of this approach were highly
unreliable and did not adhere at all to the desired framework.

6.1.2 In-Context Learning and Prompt Engineering
Seeking to improve the task-specific performance of the LLM, we
then employed a combination of in-context learning and prompt
engineering. To give the model more guidance, we converted the
sections of the event sequence framework paper that describe the
main components of the framework, adding it to the context of
the input prompt to the LLM. Additionally, we experiment with
different prompting formats, asking it to return its answer following
a specified JSON format (adding extra enforcement using structured
outputs with Pydantic). Finally, to further improve adherence to
desired behavior, we add several examples to the prompt context in
the form of several case studies included in the original paper. As
we pivot towards evaluating LLM performance on extracting just the
analysis objective (as opposed to the entire plan), we also experiment
with adding various case study descriptions and expected analysis
objectives.

Results. These experiments incorporating in-context learning
were done across several iterations, testing out different prompting
approaches and strategies for specifying desired output format. How-
ever, testing this approach on some of the example inputs from case
studies (making sure to remove that example from the prompt), re-
vealed that the system was still not very reliable in producing results
close to the expected output plans. For analysis objective extraction,
we found that providing a representative example for each of the
six possible objectives improved the model’s understanding of the
underlying reasoning behind each objective. However, the models
also frequently over-indexed on specific keywords in the natural lan-
guage. For example, for certain case studies in which we expected
the analysis objective to be Pattern Exploration, the models con-
sistently chose Stage Progression. When asked for their reasoning,
they cited mentions of the phrases “history” or “development over
. . . lifetime”, explaining why that indicates the objective of Stage
Progression rather than Pattern Exploration. Again, the models don’t
seem completely robust in matching the expected outputs, although
we note that the subjective nature of these objective extractions also
adds variability to the performance of the system.

6.1.3 Multi-Agentic Workflows
While experimenting with whole plan generation, we considered
that the single-instance LLM might struggle with managing the
complex multi-part tasks that are often present in data analysis. So,
we decided to implement several multi-agent workflows using the
AutoGen framework. Throughout this phase of testing, we used the
highly customizable nature of AutoGen to define many different
multi-agent workflows, aiming to decompose the complex data anal-
ysis tasks into smaller subtasks that individual agents can complete
and collaborate on. This involved several sequential workflows,
defining agent roles that extract smaller portions of the analysis
plan before passing the context on to the next agent, which extracts
another portion of the plan. We also experimented with agent group
chats, where several agents with different roles (e.g. framework
extractor, critic) including the real user through a user proxy, can
complete a complex task through a round-robin conversation ap-
proach.



Technique Ideal Use Case(s) Rationale Trade Offs Example System(s)

Zero-shot Prompting Simple tasks or queries where
minimal adaptation is needed

Fast, simple, cheap, requires no
examples or retraining

High variability in outputs, less
reliable for complex tasks

Most common general approach,
any situation that relies only on
base LLM capabilities

Prompt Engineering Tasks needing more consistent or
specific outputs without
retraining

Improves LLM adherence to
instructions through optimized
phrasing

Can be labor-intensive to pick a
good prompt, unreliable
performance dependent on
prompt quality

Implicitly used in all systems in
the choice of system prompts,
in-context approaches, etc.

In-Context Learning Teaching LLMs new structured
behaviors (e.g., task
decomposition, SQL generation)

Adapts LLMs to a specific task or
behavior without fine-tuning

Context window limitations (if
there are too many examples),
less robust than fine-tuning or
retraining

Data Interpreter (task graph
generation), DB-GPT (general
prompting)

Retrieval-Augmented
Generation

When external domain
knowledge is crucial and not
guaranteed in training data

Supplies specific context and
knowledge to enhance response
quality, especially when domain
knowledge isn’t included in
model training

Critically dependent on retrieval
quality, risk of retrieving
irrelevant or noisy context that
confuses the LLM

DB-GPT (knowledge base crafted
from input documents, retrieval
for each query)

Fine-Tuning Specialized, high-structure tasks
where consistency and precision
are critical (e.g., Text-to-SQL)

Creates highly robust,
domain-specific behavior

More expensive and time
consuming, dependent on data
quality, less adaptable after
fine-tuning (to tasks outside of
fine-tuning dataset)

DB-GPT (Qwen fine-tuned on
Spider dataset for Text-to-SQL)

Reasoning via
Prompting

Tasks requiring multi-step logical
reasoning, planning, or
debugging

Encourages intermediate
reasoning steps for better
correctness

Longer prompts and response
latency, reasoning can still fail
which leads to more wasted time

Data Interpreter (asking LLM to
reason in terms of a task/action
graph)

Tool-Use Tasks where external operations
(e.g., data cleaning, querying,
modeling) are needed beyond
LLM generation

Extends LLM capability without
retraining, improves reliability by
using existing code or tools

LLM can still use the tool
incorrectly, or choose the wrong
tool for the task

Data Interpreter (nodes in the task
graph have ranked relevant tools
to access), AutoGen (can assign
agents with tools through various
integrations)

Multi-Agent
Collaboration

Complex workflows requiring
role specialization, iterative task
handoff, or collaboration

Models human work paradigms,
supports parallelism and task
division, emergent benefits of
collaboration

Coordination overhead can be
high especially for complex
systems with many agents,
systems can be harder to manage
especially when errors occur

Qualitative Analysis System
(Summary, Coder, Pattern
Extractor agents), DB-GPT
(specifying multi-agent
workflows in graph form)

Monitoring &
Reflection

Tasks needing dynamic error
detection, retries, and output
improvement

Enhances reliability by allowing
for automatic error correction,
introduces self-improvement
without human intervention

Increases latency in the system,
retries might not always be
successful which can lead to
further wasted work

Data Interpreter (monitoring and
feedback triggered graph
restructuring)

Table 1: Takeaways and guidance about LLM-based techniques from survey of representative Agentic Data Analysis systems.

Results. Overall, this approach when combined with the in-
context learning and prompting strategies from the previous section
did provide some benefits in terms of output quality and consistency.
However, the process of creating multi-agent workflows involved
significant trial and error as well as complexity in implementation.
Some of the attempts actually seemed to perform worse than single-
LLM prompting, due to various factors like poorly designed agent
roles, or hallucination that was propagated through the multiple
agents of a sequential workflow. As mentioned before, multi-agent
system performance can rely heavily on the quality of the agent
design and coordination, and is vulnerable to complex failure condi-
tions that can be quickly propagated throughout the workflow.

6.1.4 RAG

Following the inconsistent success of the multi-agent approaches,
we decided to take a step back and consider other potential strategies
for improving LLM performance. While multi-agent systems can
be great for dynamic tasks requiring complex task decomposition
and flexibility, our work actually needs more robustness and control-
lability. Our original event sequence framework is strongly rooted

in the details of over 100 event sequence analysis system papers
(non-AI approaches). Therefore, we decided to try implementing
a retrieval-augmented generation (RAG) approach by building a
knowledge base from the text of all 100+ papers. To carry out this
approach, we are experimenting with using GraphRAG [3] as well
as Open WebUI RAG integration.

Results. We are still currently in the process of curating our
knowledge base of papers, but preliminary testing using GraphRAG
with a smaller subset of papers shows significant promise. The goal
of using this RAG approach is to ensure the LLM(s) has access to rel-
evant knowledge context extracted directly from papers that are most
applicable to the specific research task. By leveraging this corpus of
papers, we hope to help the system generate plans that are deeply
rooted in the context of the event sequence analysis framework, and
provide users with guidance informed by trustworthy sources. We
also plan to explore various approaches in leverage RAG principles
to retrieve multiple relevant analysis systems or approaches to the
user, targeting a more integrated human-in-the-loop interaction with
suggestions rooted in our carefully curated knowledge base.

https://github.com/open-webui/open-webui


6.1.5 Future work: Fine-Tuning
Beyond experimenting with a RAG-based approach, we have a rela-
tively large dataset of example case studies and expected objective
extractions that could potentially be used for fine-tuning. These ex-
amples consist of inputs including case study details which describe
a domain, dataset, and research goal, and outputs that specify the
expected analysis objective (which is the highest level of the event
sequence task framework) to be extracted. By leveraging these 100+
examples, we could attempt to fine-tune an open source model to
follow this expected behavior.

Results. The goal of this fine-tuning would be to further en-
hance the reliability of the LLM in terms of adherence to our ex-
pected behavior and domain. After fine-tuning this model, it could
also potentially be used as a more robust “objective extractor” agent
as part of a multi-agent system or first step in generating suggestions
for an analysis workflow.

6.2 Case Study Takeaways
This case study demonstrates some real-world considerations in ap-
plying the basic techniques to a data analysis system. Following
the experiments and observed results, we can see that this example
closely follows the summary of takeaways from the surveyed sys-
tems as well. In attempting to implement our own agentic system,
we observed and experienced many of the trade offs described. Over-
all, we found that the best approach is to start as simple as possible
with the most basic technique, then slowly add complexity when
needed while carefully considering the needs of our use case.

7 CONCLUSION

In this paper, we have covered the basic concepts behind most
modern LLM-based approaches, provided a conceptual framework
for organizing the components of agentic systems, surveyed several
of the most popular agentic systems in the domain of data analysis,
and demonstrated the survey takeaways through a case study of an
ongoing project. All in all, the insights gained from our system
survey and case study provide important guidance for practitioners
seeking to apply LLM-based techniques to their own use cases.
In a space with an overwhelming amount of techniques, concepts,
and complexity, our conceptual framework and use-case guidance
helps to provide the clarity needed to apply and understand agentic
systems with confidence to the domain of data analysis and beyond.
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