
CMSC740 Final Project - Disney BRDF Implementation
Simon Wang

University of Maryland
College Park, MD, USA
scwang00@umd.edu

Abstract
Disney has long been at the forefront of computer graphics innova-
tion, and the scenes create through their work has inspired viewers
all over the world. Inspired by this, I decided to implement Disney
style shading techniques as a new brdf in the existing Aris Renderer
from our course assignments. To demonstrate the results, I render
several scenes that showcase the diverse capability of the brdf, and
also discuss approaches to improving the usability and features of
the brdf.

CCS Concepts
• Computer Graphics→ Advanced BRDFs.

Keywords
BRDF, Disney, Shading, PyTorch, CMSC740

ACM Reference Format:
Simon Wang. 2024. CMSC740 Final Project - Disney BRDF Implementation.
In Proceedings of Advanced Computer Graphics (CMSC740). ACM, New York,
NY, USA, 8 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
In 2012, Walt Disney Animation Studios released a technical report
describing the implementation of their "principled" shader BRDFs
used to render famous movies like Wreck-it Ralph [1]. There are
some existing implementations that can be found online that I will
discuss in the following section. However, none of these sources go
in-depth about how their implementations relate to the technical
report published in 2012. Furthermore, all are written in shader
languages intended to be applied only analytically when rendering
CGI tasks, as opposed to applied to Monte Carlo path tracing based
rendering as we have studied in class. So, wanting to dive deeper
into understanding more about how Disney actually creates the
visual effects we know and love, I decided to approach converting
existing implementations and adding my own modifications into
our base PyTorch renderer.

2 Related Works
The overall intuition and general implementation details are de-
scribed in the 2012 technical report from Disney titled "Physically

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CMSC740, 2024, College Park, MD
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/XXXXXXX.XXXXXXX

Based Shading at Disney" [1]. In this report, engineer Brent Burley
introduces the motivation for Disney’s work in developing a shad-
ing system well suited for artists. The report discusses how they
used the MERL 100, a set of 100 BRDF visual samples, to analyze
various BRDFs in a tool they developed called BRDF explorer [3].

The BRDF explorer tools allows users to load multiple analytic
BRDF models written in shader language, and analyze many de-
tailed observations of their features. Using this tool, the report then
goes on to show various findings from their investigations into
both diffuse and specular obseervations.

Finally, they discuss the development of their new reflectance
model, which aimed to be more intuitive and easy to use rather than
purely accurate. This was considered at the request of many artists
who desired a shading model that was more flexible to direct in an
artistic context, and not necessarily completely physically accurate.
As a result, the model is called the "principled" model, hinting at
the fact that features are sometimes approximated around physical
properties but with some liberties taken in favor of usability.

3 Approach
3.1 The Model
The Disney model contains one color parameter and 10 scalar pa-
rameters, described as follows from the report [1]:

• baseColor: surface color
• subsurface: controls diffuse shape using a subsurface ap-
proximation.

• metallic: the metallic-ness (0 = dielectric, 1 = metallic). lin-
ear blend between two different models. The metallic model
has no diffuse component and also has a tinted incident
specular, equal to the base color.

• specular: incident specular amount (in lieu of an explicit
index-of-refraction)

• specularTint: a concession for artistic control that tints
incident specular towards the base color.

• roughness: surface roughness, controls both diffuse and
specular response.

• anisotropic: degree of anisotropy. This controls the aspect
ratio of the specular highlight.

• sheen: an additional grazing component, primarily intended
for cloth.

• sheenTint: amount to tint sheen towards base color.
• clearcoat: a second, special-purpose specular lobe.
• clearcoatGloss: controls clearcoat glossiness (0 = a “satin”
appearance, 1 = a “gloss” appearance).

3.2 Existing Base Code
As mentioned in the introduction, I am building upon the Aris ren-
derer I worked on completing as part of the CMSC740 Advanced

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

CMSC740, 2024, College Park, MD Simon Wang

Graphics course. It is an implementation of Monte Carlo path trac-
ing, including many variations of sampling technique and brdf
options to render different scenes. In particular, for this project I
built upon the microfacet BRDF implementation as a base, and used
the multiple importance sampling path tracer as the rendering al-
gorithm for my scenes. I chose the microfacet BRDF after carefully
reading through the Disney technical report, and seeing that the
microfacet distribution detailed in the appendix was very similar
to the model implemented during our course assignments.

NOTE: add the formulas here?

3.3 Official Disney HLSL BRDF Implementation
Through my research on related and existing works, I found the
source code for the aforementioned Disney BRDF Explorer tool
on their official GitHub: https://github.com/wdas/brdf. Looking
through the source folder, I found a "disney.brdf" file which is
an implementation of the Disney BRDF in shader language. So,
throughout my approach to implementing the brdf in my own
renderer, I referenced this code alongside the technical report to
properly understand how the concepts described in text could be
converted into my Tensor-based PyTorch code.

3.4 Implementation
Initially, I assumed it would be quite simple to just convert the exist-
ing shader code into Python, then just plug in the same rendering
approaches used throughout the course of the semester. However,
the model is actually quite a bit more complex. I faced many chal-
lenges understanding various implementation details, and even-
tually rewrote many sections from scratch while referencing the
technical report instead. In particular, there were many choices
made for details and coefficients that either were not mentioned
explicitly within the text or were only included in the appendix of
the report.

4 Implementation Details
In general, the implementation of the Disney BRDF system is one
large blended model, with various effects, both diffuse and specu-
lar, weighted and combined together to form one singular output
value. Staying mostly consistent with the existing course renderer
implementation, I created a new Python class called DisneyBrdf,
along with a utility function file. To make the code more readable,
I broke down separate evaluation functions for diffuse, specular,
subsurface, and clearcoat, then combined them all with the proper
weighting approach in the eval function. I will now proceed to cover
all of these parts at a high level because my implementation largely
follows the official paper and code, although I will highlight any
modifications I made or points of confusion I was able to overcome.

4.1 Diffuse Model
The diffuse model is based on the Schlick Fresnel approximation

𝐹 (𝜃) = 𝐹0 + (1 − 𝐹0) (1 − 𝑐𝑜𝑠𝜃)5

In typical diffuse models, the diffuse Fresnel factor is often given
by (1 − 𝐹 (𝜃𝑙)) (1 − 𝐹 (𝜃𝑉)) where the factor is a combination of
the fresnel terms for the lighting and viewing directions. However,
in the disney models, the term is instead calculated by modifying

the retroreflection response based on the roughness parameter as
follows

𝑓𝑑 =
𝑏𝑎𝑠𝑒𝐶𝑜𝑙𝑜𝑟

𝜋
(1+(𝐹𝐷90−1) (1−𝑐𝑜𝑠𝜃𝑙)

5) (1+(𝐹𝐷90−1) (1−𝑐𝑜𝑠𝜃𝑣)
5)

𝐹𝐷90 = 0.5 + 2 ∗ 𝑟𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠 ∗ 𝑐𝑜𝑠2𝜃𝑑

4.2 Specular Model
The specular model is made up of several components, including a
D, F, and G term. Furthermore, other parameters such as sheen and
anisotropic also influence the specular behavior of the model. So,
this section was the most challenging for me to implement.

Specular D: Searching through the paper, the specular D section
actually doesn’t describe much of the actual implementation, be-
sides the fact that they found using roughness squared yielded more
linear mapping. However, in part B.2, we find the GTR2 anisotropic
formula derivation, which if we look at the brdf code from BRDF
explorer is what the specular D term actually uses. In short, the
D term is the base specularity, and is controlled by the roughness
parameter as well as various vector directions (half vector, tangent,
bitangent).

Specular F: The F term is effectively a simple linear interpolation
between the base specularity Fresnel term and the Schlick approx-
imation of the angle between the incident and halfway vectors.
However, in my implementation, I realized that the initial Fresnel
term was a bit more complex, and after closer inspection under-
stood that it was actually influenced by the tint color of metallic
materials as well. As a result, the initial specularity was calculated
by a linear interpolation between the tint color and surface color,
weighted by the metallic parameter. The actual tint color also had
to be calculated by converting the color to grayscale, then dividing
the color by this to adjust the tint.

approximating luminance
to_grayscale = torch.tensor([0.3,0.6,0.1])
luminance = to_grayscale*color

normalizing the color
tint = torch.where(luminance > 0,

color/luminance, torch.ones_like(color))
tint_color = torch.lerp(torch.ones_like(tint),

tint, specularTint)
F0 = torch.lerp(specular * 0.08 * tint_color,

color, metallic)

The final F term is then calculated almost identically to the
Fresnel term in the diffuse model section, except using this new
specular F0 value.

Specular G: The G term is based on both the Smith shadowing
term as well as the GGX term derived by Walter [4]. These terms
are combined from both the incident and outgoing directions, and
again adjusted by the roughness parameter. It is important to not
here, that in the section from the paper they only briefly mention
using a gain value of (0.5 + 𝑟𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠/2)2, but only elaborate on
the actual aspect factor calculation in the appendix. So, the full im-
plementation involved calculating the aspect coefficient which was

CMSC740 Final Project - Disney BRDF Implementation CMSC740, 2024, College Park, MD

factored by 0.9 to limit ratios to 10:1, as well as the x,y coefficients
as follows:

aspect = math.sqrt(1.0 - anisotropic * 0.9)
roughness = 0.5 + roughness/2
max against 0.001 to prevent divide by zero
ax = max(0.001, roughness**2 / aspect)
ay = max(0.001, roughness**2 * aspect)
...
NdotL = dot(n,wi)å
NdotV = dot(n,wo)
G = smith_GGX_aniso(NdotL, dot(wi,X), dot(wi,Y), ax, ay)
* smith_GGX_aniso(NdotV, dot(wo,X), dot(wo,Y), ax, ay)

4.3 Sheen
The sheen color component is calculated using the same tint de-
scribed from the specular F, linearly interpolating between 1 and
the tint weighted by the sheenTint parameter. The final sheen con-
tribution is then the earlier Schlick Fresnel term multiplied by the
sheen amount parameter and the sheen color.

4.4 Subsurface
The subsurface effect is approximated by the Hanrahan-Krueger
model [2]. There isn’t much detail about this on the official report,
but modeling after the BRDF Explorer code as well as looking into
the original Hanrahan-Krueger paper, it is my understanding that
the approach here is to flatten the retroreflection depending on
the roughness parameter. The overall effect is produced by several
Fresnel terms, which are then combined in a linear interpolation
and returned using the following formula: 1.25 * (fss * (1 / (NdotL +
NdotV) - 0.5) + 0.5), where fss is the interpolated Fresnel term, and
the dot products are between the surface normal and the incident
and outgoing rays respectively.

4.5 Clearcoat
Finally, the clearcoat component is the second of the two specular
lobes, and uses the GT model as well. However, in contrast to the
base specular components, there are some analytically determined
constants used for calculating these terms. For example, the F term
is interpolated between the values of 0.04 and 1.0, and the GGX
smith shadowing term is scaled by 0.25.

5 Experiments
To test out my newly implemented BRDF model, I tried out render-
ing many of the same scenes from our assignments, in addition to
adding the bunny object to a scene from the provided data folder.
Below are several example results using a wide range of parameter
values.

5.1 Sample Results
5.2 Discussion of Results
Overall, with 10 parameters the possibilities for rendering effects are
endless, but through my experimentation I was able to test a wide
range of appearances. As described in the implementation details,
some of the parameters are very closely related, such as the specular
and metallic properties, as well as the anisotropic parameter that

Figure 1: A metallic statue

Figure 2: Pink is clearcoated with gloss, green is rough but
with some subsurface scattering?

Figure 3: A very shiny and high sheen bunny...

changes the specular highlight. I found the subsurface parameter
to be very interesting, as you can see in the 4th figure. Combined
with a high sheen the hard-surfaced statue was able to be rendered

CMSC740, 2024, College Park, MD Simon Wang

Figure 4: As much subsurface and sheen as possible!

to look somewhat soft and almost felt-like. On the other end of the
spectrum, the high metallic parameter for the bunny emphasized
many of its small edges from its mesh despite the darkness of the
scene. Similarly, the first statue rendering looks drastically different
from the yellow one, with much of its features being smooth and
metallic. With the spheres I used a higher value of clearcoat, and
you can see on the pink ball this results in a slightly different effect
from the metallic bunny or statue, as if there is a glossy finish on
the surface.

6 Prompt-Based Parameter Tuning with LLMs
As an additional experiment and feature to the renderer, I decided
to try using an LLM (in this case GPT4o through my own OpenAI
API account) to enable more intuitive prompt-based control of the
parameters. Although the Disney report mentioned focusing on
ease of use for artists, I still felt that it was challenging to tune all 10
parameters every time I wanted a different scene. While this might
be important for a professional artist who needs finer control, if
I just want an interesting rendering that looks a certain way as a
typical user, I might not know exactly what ratio of anisotropic-
ness or sheen to use just get "a blue shiny ball". So, using some
simple Python UI and LLM prompting, I create a script that can
generate yaml config format and modify the parameters to match
your prompt!

NOTE: I initially planned on integrating the custom prompting
feature into the render command itself to alter the configuration file
live, but found that the LLM output was still somewhat inconsistent
at times and produced invalid yaml code. So, to demonstrate the
potential of the feature I am currently just outputting a file then
manually adjusting it to make sure it is correct.

6.1 Prompting
To set up my API call, I first grab a brdf configuration file to use as
reference through the command line arguments. This will be the
brdf we are asking the model to modify. Then, I send the contents
of the file to the model with the following prompt:
completion = client.chat.completions.create(

model="gpt-4o",
messages=[
{"role": "system", "content": "You are an expert at
computer graphics techniques, specifically setting
parameters in BRDFs to create specific rendering
effects."},
{"role": "user",

"content": [
{
"type": "text",

"text": f"Based on the contents and format of the
following .yaml brdf config file:

\n{original_content}\n While absolutely adhering
to exactly the same format of the original config

file provided earlier, modify the
parameter values in the config section to match
the prompt described in the following text: "

},
{
"type": "text",
"text": text_input
}
]}

]
)

getting the model response
new_content = completion.choices[0].message.content

I then simply write the output to a yaml file, and the results were
quite effective. The model seems to be able to understand how tun-
ing various parameters couldmatch the visual appearance described
in the user’s prompt.

6.2 Results
User prompt: "rough plastic surface" Changes made:
- name: disney

config:
color: [0.2, 0.2, 0.4]
roughness: 0.8
metallic: 0
subsurface: 0
specular: 0.5
specularTint: 0
anisotropic: 0
sheen: 0
sheenTint: 0
clearcoat: 0.7
clearcoatGloss: 0.8

- name: diffuse
config:

color: [0, 0, 0]

The model was able to recognize that while the prompt wanted
roughness, it also wanted plastic which meant some specularity
and also increased the clearcoat to give it a glossy plastic effect.
User prompt: "two copper spheres" Changes made:
- name: disney

CMSC740 Final Project - Disney BRDF Implementation CMSC740, 2024, College Park, MD

Figure 5: plastic ajax

Figure 6: two copper spheres

config:
color: [0.955, 0.637, 0.538]
roughness: 0.2
metallic: 1
subsurface: 0
specular: 0.5
specularTint: 0
anisotropic: 0
sheen: 0
sheenTint: 0
clearcoat: 0.1
clearcoatGloss: 0.5

- name: disney
config:

color: [0.955, 0.637, 0.538]
roughness: 0.25
metallic: 1
subsurface: 0
specular: 0.5
specularTint: 0
anisotropic: 0
sheen: 0
sheenTint: 0
clearcoat: 0.1
clearcoatGloss: 0.5

In this result even though no specific textures or effects were stated,
the model recognized the approximate color of copper as well as
the metallic nature of the material and adjusted the brdf effectively
to look quite convincing as copper.

7 Conclusion
In conclusion, throughout the implementation of the Disney BRDF
model into the course PyTorch renderer, I learned a lot about the
nuances and details behind Disney’s implementation. It was very
fascinating to see how the engineers approached developing the
model, using classic graphics algorithms as their foundation while
using analytical observations to simplify certain aspects for artists. I
was challenged in understanding the at-times lack of specific detail
in the documentation, but was able to gain deeper understanding
for myself because of that fact as well.

7.1 Notes About My Code
For the code included with this final report, I have included the
entire aris codebase with my new files included. However, for this
project the files I have created can simply be plugged into the
existing implementation, and rendered with the commands that can
be found in the appendix. The 𝑑𝑖𝑠𝑛𝑒𝑦.𝑝𝑦 primary BRDF code goes
in the aris/brdf/ folder, the 𝑑𝑖𝑠𝑛𝑒𝑦𝑢𝑡𝑖𝑙𝑠 goes in the aris/utils/folder,
and the several new yaml config files are just examples used for
my renderings, but the "disney" brdf is in the registry and can be
added to any object! I have included these specific files outside of
the aris folder as well for ease of viewing.

Acknowledgments
To Robert, for the bagels and explaining CMYK and color spaces.

References
[1] Brent Burley. 2012. Physically Based Shading at Disney. Technical Report. Walt

Disney Animation Studios.
[2] Pat Hanrahan and Wolfgang Krueger. 1993. Reflection from Layered Surfaces due

to Subsurface Scattering.
[3] Walt Disney Animation Studios. 2012. BRDF Explorer. https://github.com/wdas/

brdf/blob/main/src/brdfs/disney.brdf
[4] Bruce Walter. 2007. Microfacet Models for Refraction through Rough Surfaces.

Eurographics Symposium on Rendering (2007).

A Sample Rendering Configurations
Here are a few full configuration files used formy sample renderings.
Low samples per pixel values were used to save time.

https://github.com/wdas/brdf/blob/main/src/brdfs/disney.brdf
https://github.com/wdas/brdf/blob/main/src/brdfs/disney.brdf

CMSC740, 2024, College Park, MD Simon Wang

A.1 Sample Result Configs and Commands
Rendering Command:
python3 render.py scene=sceneName

integrator=path_mis spp=50

Custom Prompt Command:
python3 aris/utils/custom_prompt.py

--brdf_path=./config/scene/brdf/cbox_disney.yaml

"Metallic Statue":
- name: disney

config:
color: [0.2, 0.2, 0.4]
roughness: 0
metallic: 1
subsurface: 0
specular: 0
specularTint: 0
anisotropic: 0
sheen: 0
sheenTint: 0
clearcoat: 0
clearcoatGloss: 0

- name: diffuse
config:
color: [0, 0, 0]

"Pink and Green Balls":
- name: diffuse

config:
color: [0.725, 0.71, 0.68]

- name: diffuse
config:
color: [0.161, 0.133, 0.427]

- name: diffuse
config:
color: [0.630, 0.065, 0.05]

- name: disney
config:
color: [1.0, 0.4, 0.7]
roughness: 0.2
metallic: 0.6
subsurface: 0
specular: 0.5
specularTint: 0
anisotropic: 0
sheen: 0
sheenTint: 0
clearcoat: 1
clearcoatGloss: 0.5

- name: disney
config:
color: [0.2, 1.0, 0.1]
roughness: 1
metallic: 0
subsurface: 1
specular: 0.5
specularTint: 0

anisotropic: 0
sheen: 0
sheenTint: 0
clearcoat: 0
clearcoatGloss: 0.5

- name: diffuse
config:

color: [0.8, 0.8, 0.8]

"Shiny Bunny":
- name: disney

config:
color: [1.0, 0.4, 0.7]
roughness: 0.2
metallic: 1
subsurface: 0
specular: 0.7
specularTint: 0
anisotropic: 0.8
sheen: 0.8
sheenTint: 0.9
clearcoat: 0.8
clearcoatGloss: 0.5

- name: diffuse
config:

color: [0.8, 0.8, 0.8]

"Subsurface Ajax":
- name: disney

config:
color: [0.9, 0.8, 0.1]
roughness: 1
metallic: 0
subsurface: 1
specular: 0
specularTint: 0
anisotropic: 0
sheen: 1
sheenTint: 1
clearcoat: 0
clearcoatGloss: 0

- name: diffuse
config:

color: [0.8, 0.8, 0.8]

A.2 Additional Renderings
Some extra images I rendered.

CMSC740 Final Project - Disney BRDF Implementation CMSC740, 2024, College Park, MD

CMSC740, 2024, College Park, MD Simon Wang

	Abstract
	1 Introduction
	2 Related Works
	3 Approach
	3.1 The Model
	3.2 Existing Base Code
	3.3 Official Disney HLSL BRDF Implementation
	3.4 Implementation

	4 Implementation Details
	4.1 Diffuse Model
	4.2 Specular Model
	4.3 Sheen
	4.4 Subsurface
	4.5 Clearcoat

	5 Experiments
	5.1 Sample Results
	5.2 Discussion of Results

	6 Prompt-Based Parameter Tuning with LLMs
	6.1 Prompting
	6.2 Results

	7 Conclusion
	7.1 Notes About My Code

	Acknowledgments
	References
	A Sample Rendering Configurations
	A.1 Sample Result Configs and Commands
	A.2 Additional Renderings

